基于倏逝波吸收的塑料光纤葡萄糖传感特性

初凤红 王计元

(上海电力学院计算机与信息工程学院,上海 200090)

摘要 利用塑料光纤作为传感和传光器件,以高亮度经正弦信号调制的蓝光 LED 为光源,基于倏逝波吸收原理进 行葡萄糖浓度传感。实验研究了 U形、双锥形、螺旋形传感头对不同质量浓度葡萄糖溶液的传感特性,实验结果为 螺旋形传感头的灵敏度最高。螺旋形传感头的透射光功率与葡萄糖质量浓度之间呈线性关系,线性系数为 0.986, 系统的灵敏度为 0.1 μg/mL。实验还对螺旋形传感头在质量浓度分别为 0 mg/100 mL 和 25 mg/100 mL 葡萄糖溶 液中透射光功率的重复性进行了测试,在 5 个循环内实验结果具有重复性。

关键词 传感器;葡萄糖;塑料光纤;倏逝波

中图分类号 TN252; TP212.14 文献标识码 A doi: 10.3788/CJL201239.0505002

Glucose Evanescence Absorption Sensor by Using Plastic Optical Fiber

Chu Fenghong Wang Jiyuan

(School of Computer Science and Information Technology, Shanghai University of Electric Power,

Shanghai 200090, China)

Abstract Glucose concentration is detected by using evanescent absorption method. Plastic optical fiber is used as sensor head and light transmit element. A high brightness blue LED modulated with sine signal is used as excitation source with spectrum centered at 470 nm. The sensitivity of the system under different shaped sensor heads (U-shaped, biconical-shaped, spiral-shaped) is measured, and the spiral-shaped sensor head shows the highest sensitivity to glucose. The relationship between the spiral-shaped output light power and glucose concentration is linearly and the linear coefficient is 0.986. The sensitivity of the sensor head is 0.1 μ g/mL. The system shows excellent reversibility when the sensor is tested by alternately cycling between 0 mg/100 mL and 25 mg/100 mL glucose solution in five cycles.

Key words sensors; glucose; plastic optical fiber; evanescent OCIS codes 060.2370; 120.1880; 130.6010

1 引 言

葡萄糖作为一种重要的化工原料及中间体,其 检测对于分析产品组成及监测反应进程有着十分重 要的作用。据统计,自1980年以来,糖尿病患者的 总人数由1.53亿增至3.47亿,翻了1倍多,因此建 立快速、简便的葡萄糖测定方法在医学上对糖尿病 的诊断和治疗具有十分重要的意义。

葡萄糖检测包括电化学方法^[1,2]、各种光学方法(包括近红外光谱法^[3]、偏振光法^[4]、拉曼光谱法^[5]、光声光谱法^[6])、微机电系统(MEMS)技术^[7]、 反离子电渗透法^[8]和核磁共振法^[9]等。这些检测方 法各有利弊。目前应用最广泛的是基于葡萄糖氧化 酶(GOD)的电化学传感方法。但是该方法通常需 要葡萄糖氧化酶作为反应催化剂,成本较高、操作复 杂并且长期稳定性差。基于倏逝波吸收的光纤传感 器具有结构简单、便于小型化、成本较低等优点。由 于它还具有适于化学过程中浓度的连续测量以及可 用于研究物质吸收光谱的特点,因此可以被用于化 学传感^[10~12]。倏逝波吸收传感的原理是:从纤芯中 透射的倏逝波与外界物质相互作用,被物质吸收,导 致光纤中传播的光发生衰减,通过检测透射光功率 的变化来测量物质的浓度^[13]。

收稿日期: 2012-01-13; 收到修改稿日期: 2012-02-06

基金项目:国家自然科学基金(50903014)和上海市自然科学基金(11ZR1414400)资助课题。

作者简介:初凤红(1979—),女,博士,副教授,主要从事光纤气体传感方面的研究。E-mail: chufenghong@siom.ac.cn

本文基于倏逝波吸收原理,选用聚甲基丙烯酸 甲脂(PMMA)塑料光纤作为传光和传感元件(塑料 光纤纤芯折射率为 1.490,包层折射率为 1.417,数 值孔径为 0.47,光纤外径为 1 mm,其中包层厚度为 20 µm,纤芯直径为 960 µm)。塑料光纤直径大,宜 于连接,光的耦合效率也较高,同时还兼有柔软、抗 弯曲、耐振动、抗辐射、价格便宜等优点^[14],并且光 纤传感器具有体积小、质量轻、耐腐蚀和抗电磁干扰 等独特优势^[15]。实验研究了 U形、双锥形、螺旋形 等不同形状传感头对系统灵敏度的影响,实验结论 为螺旋形传感头的灵敏度最高。螺旋形传感头的透 射光功率与葡萄糖浓度之间呈线性关系,线性系数 为 0.986。还研究了螺旋形传感头对葡萄糖测试的 重复性。

2 实验原理

当光在光纤中传输时,会在两种介质的分界面 上产生全反射。此时,一部分光渗入到低折射率的 介质中,形成一种不同于高折射率介质的传输波。 它是一种趋向于迅速衰减的电磁波,故称为倏逝波。

对于去掉包层的多模光纤,由于倏逝波的吸收, 光纤中透射的光功率为^[16]

$$P = P_0 \exp(-\gamma L), \qquad (1)$$

式中γ为倏逝波吸收系数,L为敏感区长度,P₀为入 射光功率。吸收系数为^[16]

$$\gamma = \frac{\alpha \lambda n_2 \cos^2 \theta}{2\pi \rho (n_1^2 - n_2^2) \sin \theta \sqrt{\sin^2 \theta - \sin^2 \theta_c}}, \quad (2)$$

式中 α 为周围介质的吸收系数,λ 为入射光波长,n₁ 为纤芯折射率,n₂ 为周围介质的折射率,θ 为光线与 界面法线的夹角,θ_c 为纤芯与外界界面的全反射临 界角,ρ 为光纤纤芯半径。根据(1)式和(2)式可知, 光纤中透射的光功率与周围介质的折射率有关,当 周围介质折射率改变时,透射光功率会发生相应的 变化。实验原理是当葡萄糖溶液质量浓度不同时, 溶液的折射率就会发生变化,置于葡萄糖溶液中的 光纤透射光功率会随之改变,通过测试光纤中的透 射光功率来测试葡萄糖溶液质量浓度。

3 传感头的制备和实验装置

实验采用塑料光纤作为传感和传光元件。传感 头的做法是首先用刀片将塑料光纤的护套剥去一定 长度,然后刮去包层(通过测量剩下部分的直径控制 是否包层已经全部剥除)。将剥去包层的光纤制成 U形、双锥形和螺旋形的光纤传感头。其中U形光 纤传感头的做法是:将4 cm长剥去护套和包层的塑 料光纤弯成U形,U形光纤的弯曲半径为2 mm,两 端用金属线固定;双锥形光纤传感头的制作方法是: 将4 cm长剥去护套和包层的塑料光纤置于乙醇灯 上方,当光纤开始软化时在光纤两端施加拉力拉制 成双锥形,锥形区的长度为2 cm,锥形区最小直径 为0.6 mm;螺旋形光纤传感头的制作方法是:将 4 cm长剥去护套和包层的塑料光纤缠绕在一定直 径的不锈钢棒上定型一段时间,然后将不锈钢棒抽 出即制得螺旋形光纤传感头,螺旋形传感头的直径 为4 mm,螺距为2 mm。图1为螺旋形传感头照片。

图 1 螺旋形传感头照片 Fig. 1 Photo of spiral-shaped sensor head

实验选用成本低、性能稳定的商用高亮度 470 nm蓝光 LED 作为激发光源。为了消除外界干 扰光对实验结果的影响,光源用 20 kHz 正弦信号 调制。采用 PIN 光电二极管接收透射光,用数据采 集卡采集光纤传感头的透射光功率并送入计算机。 实验装置示意图如图 2 所示。

实验中不同质量浓度葡萄糖溶液的制备方法是: 用分析天平称取一定量葡萄糖,加入到100 mL蒸馏 水中,配制成质量浓度为 5 mg/100 mL到 25 mg/ 100 mL的葡萄糖溶液。当葡萄糖的质量浓度从 0 mg/100 mL到 25 mg/100 mL时,折射率的范围为 1.3322~1.3617^[17]。每次更换不同质量浓度葡萄糖 溶液时,用蒸馏水清洗3次,再用待测溶液清洗1次, 以保证传感池内的待测溶液的浓度准确。

4 实验结果与分析

4.1 传感头测量重复性实验

为了分析系统对葡萄糖浓度测试的重复性,实验采用螺旋形塑料光纤传感头,在室温下循环测试系统对 25 mg/100 mL 和 0 mg/100 mL 葡萄糖溶液的传感特性,实验结果如图 3 所示。当葡萄糖的质量浓度在 25 mg/100 mL 和 0 mg/100 mL 之间交替变换时,测量的透射光功率重复性较好,光电二极管接收的光功率变化较小。

Fig. 3 Reproducibility of spiral-shaped sensor head on switching between 25 mg/100 mL and 0 mg/ 100 mL glucose

4.2 不同形状传感头灵敏度测试实验

在室温下分别测试了 U 形、双锥形和螺旋形 3 种传感头对不同浓度葡萄糖溶液的传感特性,实验 结果如图 4 所示。图中纵坐标是光波穿过纯溶剂的 透射功率 I。与葡萄糖溶液的透射功率 I 的比值。 从图 4 可以看出,相对于 U 形和双锥形传感头而 言,螺旋形传感头的灵敏度最高。从文献[16,18]中 可知,多模光纤倏逝波吸收型传感器的灵敏度与传 感区的长度、倏逝波吸收系数及倏逝波渗透深度呈 正比,螺旋形传感头灵敏度高的原因可能是与其他 两种传感头相比,相同敏感区长度下倏逝波吸收系 数更高、等效敏感区长度更长的原因。

4.3 传感头测量实验

图 5 为不同葡萄糖浓度下螺旋形光纤传感头的 传感特性曲线及其线性拟合,从拟合结果得出,该曲 线的线性相关系数 *R*=0.986。实验中,当葡萄糖质 量浓度从 0 mg/100 mL 变化到 5 mg/100 mL 时,

透射光功率的变化为 47.6 mV,系统中数据采集卡的分辨率为0.1 mV,可以计算葡萄糖浓度测试系统的灵敏度约为 0.1 µg/mL。在实际测量中,可以用灵敏度较高,并且传感特性呈线性分布的螺旋形塑料光纤作为传感头。

图 5 螺旋形传感头葡萄糖传感特性曲线 Fig. 5 Curve of glucose concentration and spiral-shaped sensor head output light intensity

5 结 论

利用塑料光纤作为传感和传光器件,以正弦信 号调制的 LED 为光源,基于倏逝波吸收原理进行葡 萄糖浓度传感,该传感系统具有成本低、操作简单、 不需酶等优点。实验研究了 U形、双锥形、螺旋形 传感头对不同浓度葡萄糖溶液的传感特性,实验结 果为螺旋形传感头的灵敏度最高。螺旋形传感头的 透射光功率与葡萄糖浓度之间呈线性关系,线性系 数为 0.986,系统的灵敏度为 0.1 μg/mL。实验还 对螺旋形传感头在质量浓度分别为 0 mg/100 mL 和 25 mg/100 mL 葡萄糖溶液中透射光功率的重复 性进行了测试,在 5 个循环内实验结果具有重复性。 系统的稳定性受光源光功率的变化及光路的振动等 影响。为了提高系统的灵敏度和检测下限,下一步 对传感系统的改进方案是设计输出更为精准的正弦 信号发生电路,以提高 LED 光源输出光功率的稳定性,并理论分析不同弯曲半径的螺旋形光纤对系统 灵敏度的影响,计算出螺旋形传感头的最佳弯曲 半径。

参考文献

- 1 Syed M. Usman Ali, O. Nur, M. Willander *et al.*. A fast and sensitive potentiometric glucose microsensor based on glucose oxidase coated ZnO nanowires grown on a thin silver wire[J]. *Sensors and Actuators B*, 2010, **145**(2): 869~874
- 2 Bin Fang, Cuihong Zhang, Guangfeng Wang *et al.*. A glucose oxidase immobilization platform for glucose biosensor using ZnO hollow nanospheres[J]. Sensors and Actuators B, 2011, 155(1): 304~310
- 3 Kexin Xu, Qingjun Qiu, Jingying Jiang et al.. Non-invasive glucose sensing with near-infrared spectroscopy enhanced by optical measurement conditions reproduction technique[J]. Opt. & Laser in Engng., 2005, 43(10): 1096~1106
- 4 Chien-ming Wu, Ying-Chieh Tsai. Angular displacementenhanced hetero dynepolarimeter for the measurement of optically active media [J]. Sensors and Actuators B, 2006, **120** (1): $324 \sim 328$
- 5 I. Delfino, C. Camerlingo, M. Portaccio *et al.*. Visible micro-Raman spectroscopy for determining glucose content in beverage industry[J]. *Food Chemistry*, 2011, **127**(2): 735~742
- 6 Z. M. Zhao, R. Myllyla. The effect of optical scattering on pulsed photo acoustic measurement in weakly absorbing liquid [J]. Measurement Science and Technology, 2001, 12 (12): 2172~2177
- 7 Xian Huang, Siqi Li, Jerome S. Schultz et al. A MEMS affinity glucose sensor using a biocompatible glucose-responsive polymer [J]. Sensors and Actuators B, 2009, 140(2): 603~609
- 8 Liu Jian, Liu Hongmin, Yang Qingde *et al.*. Noninvasive detection of blood glucose by electrochemical biosensor [J]. *Chinese J. Sensors and Actuators*, 2007, **20**(12): 2535~2539 刘 剑,刘红敏,杨庆德等.利用电化学生物传感器进行无创血 糖检测技术研究[J]. 传感技术学报, 2007, **20**(12): 2535~2539
- 9 Dai Yi. Singal Processing and Algorithm Optimization of Non-Invasive Glucose Detection by Nuclear Magnetic Resonance Spectrum[D]. Chengdu: University of Electronic Science and

Technology of China, 2010

代 毅. 核磁共振波谱法无创血糖测量的信号处理与算法优化 [D]. 成都:电子科技大学,2010

- 10 V. V. R. Sai, Tapanendu Kundu, Chitra Deshmukh et al.. Label-free fiber optic biosensor based on evanescent wave absorbance at 280 nm [J]. Sensors and Actuators B, 2010, 143(2): 724~730
- 11 A. Iadicicco, D. Paladino, S. Campopiano *et al.*. Evanescent wave sensor based on permanently bent single mode optical fiber [J]. Sensors and Actuators B, 2011, 155(2): 903~908
- 12 Sunil K. Khijwania, Kirthi L. Srinivasan, Jagdish P. Singh. An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity[J]. Sensors and Actuators B, 2005, 104(2): 217~222
- 13 Kong Le, Zhu Daming, Yin Zejie et al.. Calculation of the sensitivity of optical fiber sensor based on evanescent wave absorption[J]. Nuclear Electronics & Detection Technology, 2006, 26(5): 652~655

孔 乐,朱大鸣,阴泽杰等.基于 Evanescent Wave 吸收的光纤 传感器灵敏度计算分析[J].核电子学与探测技术,2006,**26**(5): 652~655

- 14 Chu Fenghong, Ye Lei, Yang Junjie. Experimental study of aromatic explosives sensor based on fluorescence quenching[J]. *Chinese J. Lasers*, 2011, **38**(9): 0908004 初凤红,叶 磊,杨俊杰.基于荧光猝灭原理的硝基芳烃类爆炸 物检测实验研究[J].中国激光,2011, **38**(9): 0908004
- 15 Qi Bo, Pang Fufei, Cao Wenxin *et al.*. Cladding-mode resonance of specialty fiber sensing system based on intensity detection method[J]. *Chinese J. Lasers*, 2011, 38(5): 0505007
 齐 博,庞拂飞,曹雯馨等.基于强度检测的包层模谐振特种光 纤传感系统[J]. 中国激光, 2011, 38(5): 0505007
- 16 Ardalan Armin, Mahmood Soltanolkotabi, Peyman Feizollah. On the pH and concentration response of an evanescent field absorption sensor using a coiled-shape plastic optical fiber[J]. Sensors and Actuators A, 2011, 165(2): 181~184
- 17 S. Binu, V. P. Mahadevan Pillai, V. Pradeepkumar et al.. Fibre optic glucose sensor[J]. Materials Science and Engineering C, 2009. 29(1): 183~186
- 18 V. Ruddy, B. D. MacCraith, J. A. Murphy. Evanescent wave absorption spectroscopy using multimode fibers [J]. J. Appl. Phys., 1990, 67(10): 6070~6074

栏目编辑:何卓铭